Robust Dead Reckoning System for Mobile Robots Based on Particle Filter and Raw Range Scan

نویسندگان

  • Zhuohua Duan
  • Zixing Cai
  • Huaqing Min
چکیده

Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hybrid system estimation problems, and they have also been widely used in many WMRs applications, such as pose tracking, SLAM, video tracking, fault identification, etc. In this paper, the readings of a laser range finder, which may be also interfered with by noises, are used to reach accurate dead reckoning. The main contribution is that a systematic method to implement fault diagnosis and dead reckoning in a particle filter framework concurrently is proposed. Firstly, the perception model of a laser range finder is given, where the raw scan may be faulty. Secondly, the kinematics of the normal model and different fault models for WMRs are given. Thirdly, the particle filter for fault diagnosis and dead reckoning is discussed. At last, experiments and analyses are reported to show the accuracy and efficiency of the presented method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

Sensor Fusion with Coordinated Mobile Robots

Robust localization is a prerequisite for mobile robot autonomy. In many situations the GPS signal is not available and thus an additional localization system is required. A simple approach is to apply localization based on dead reckoning by use of wheel encoders but it results in large estimation errors. With exteroceptive sensors such as a laser range finder natural landmarks in the environme...

متن کامل

An experimental comparison of localization methods

Localization is the process of updating the pose of a robot in an environment, based on sensor readings. In this experimental study, we compare two recent methods for localization of indoor mobile robots: Markov localization, which uses a probability distribution across a grid of robot poses; and scan matching, which uses Kalman filtering techniques based on matching sensor scans. Both these te...

متن کامل

Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning

This paper presents an aided dead-reckoning navigation structure and signal processing algorithms for self localization of an autonomous mobile device by fusing pedestrian dead reckoning and WiFi signal strength measurements. WiFi and inertial navigation systems (INS) are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low-co...

متن کامل

Navigation Sensors for Mobile Robots

In mobile robot applications navigation systems are of great importance. Automation of mobile robots demands robust navigation systems. This thesis deals with a few solutions on how to help a mobile robot navigate in an environment. Navigation systems using retroreflective beacons and applications relying on laser range finders are two different solutions to aid a mobile robot. The first type o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014